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THE MATCHING RELATION AND SITUATION-SPECIFIC BIAS MODULATION IN PROFESSIONAL
FOOTBALL PLAY SELECTION

STEPHANIE T. STILLING AND THOMAS S. CRITCHFIELD
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The utility of a quantitative model depends on the extent to which its fitted parameters vary
systematically with environmental events of interest. Professional football statistics were analyzed to
determine whether play selection (passing versus rushing plays) could be accounted for with the
generalized matching equation, and in particular whether variations in play selection across game
situations would manifest as changes in the equation’s fitted parameters. Statistically significant changes
in bias were found for each of five types of game situations; no systematic changes in sensitivity were
observed. Further analyses suggested relationships between play selection bias and both turnover
probability (which can be described in terms of punishment) and yards-gained variance (which can be
described in terms of variable-magnitude reinforcement schedules). The present investigation provides
a useful demonstration of association between face-valid, situation-specific effects in a domain of
everyday interest, and a theoretically important term of a quantitative model of behavior. Such
associations, we argue, are an essential focus in translational extensions of quantitative models.
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The present report concerns the generality
of a relation described by the generalized
matching equation (GME; Baum, 1974) as
applied to situations outside the laboratory.
The GME may be expressed as

log<%> =alog<:—;> + logd (1)

in which B terms signify competing behaviors
and the r terms signify reinforcement that is
contingent on those behaviors. With loga-
rithmic transformation the relationship be-
tween behavior and reinforcement ratios is a
linear function in which a = slope (a
measure of sensitivity to differential rein-
forcement) and log b = y-intercept (a
measure of bias, or pervasive preference for
one behavior beyond what the r terms
predict). As an account of operant choice,
the GME is neither conceptually complete
nor universally applicable (e.g., Davison &
Nevin, 1999), but it has advanced the analysis
of behavior in a remarkable array of labora-
tory and nonlaboratory situations. Thus,
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existing studies on the GME demonstrate
broad generality, two aspects of which may
be noted separately.

One form of generality is shown when a
model accounts for substantial portions of the
variance in behavior across many domains of
investigation, or across many instances within a
particular domain. For example, Baum’s
(1974, 1979) seminal papers on the GME
showed that the GME described choice in
many different laboratory investigations that
used a variety of procedures and were de-
signed to evaluate a variety of choice-influenc-
ing variables. In applied extensions, the GME
has been found to account for a substantial
amount of variance in the allocation across
response options of behaviors as diverse as
conversation (Borrero, et al., 2007; McDowell
& Caron, in press-a), teen pregnancy (Bulow &
Meller, 1998), classroom conduct (Billington
& DiTommaso, 2003), and sport performance
(Reed, Critchfield, & Martens, 2006; Vollmer
& Bourret, 2000). The same consistent good fit
also has been shown for numerous instances
within selected domains of application (for
example, over 300 college basketball teams;
Alferink, Critchfield, Hitt, & Higgins, 2009). In
these cases, the critical point is that the GME’s
defining variables (in Equation 1, B;/Bs
and 7 /7 ratios) covary dependably as the
model predicts. This type of generality can be
termed reliability of fit (Stilling & Critchfield, in
press).
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A different type of generality is shown when
a model such as the GME sheds light on
situation-specific variations in behavior within
a domain of application. This type of general-
ity, which scales fitted parameter estimates to
specific kinds of environmental events, may be
termed explanatory flexibility (Stilling & Critch-
field, in press), and is the focus of consider-
able basic research (for a detailed example of
parameter scaling in laboratory experiments,
see Davison & Nevin, 1999). For example,
readers of concurrent-schedules studies in
which changeover delay (COD) is manipulat-
ed know that strength of preference is an
asymptotic function of COD duration (Mazur,
1991). The GME puts this effect into theoret-
ical context by showing that it manifests as
changes in the sensitivity parameter (Baum,
1974).

As Critchfield and Reed (2009) have noted,
explanatory flexibility should be a primary
focus in translational research because

A model is of limited interest if its fitted
parameters only show effects that are peculiar
to some laboratory procedure. The working
assumption, therefore, should be that these
parameters apply in meaningful ways to the
world outside of the laboratory.... Translation-
al research can determine whether this is the
case by evaluating the relationship between a
model’s fitted parameters and face-valid effects
in an everyday domain. (Critchfield & Reed,
p- 354)

For instance, in applications of the GME to
basketball shot selection (in Equation 1, B
terms were the number of two-point and three-
point shots taken, and r terms were the
number of those shots made), bias varied
when rule changes affected the difficulty of
making three-point shots (Romanowich, Bour-
ret, & Vollmer, 2007), and sensitivity was
higher for players on successful versus unsuc-
cessful teams and for regular players versus
substitutes (Alferink, et al., 2009). Unfortu-
nately, the explanatory flexibility of the GME
has been evaluated only rarely outside of the
laboratory (for other examples, see McDowell
& Caron, in press-b; Reed & Martens, 2008).
Of interest to the present discussion is the
extent to which the GME’s fitted parameters
describe face-valid effects that make American-
rules football (hereafter, simply football) inter-
esting to its followers, and was prompted by a
preliminary analysis reported by Reed et al.
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(2006). No thorough explanation of football
rules (Goodell, 2008) is possible here, but
underpinning the offensive portion of the
game is a team’s imperative to move the ball
toward a goal line to score points. Progress
toward scoring may be accomplished through
either passing plays (in which one player
throws the ball to another) or rushing plays
(in which one player runs with the ball).
Across many opportunities within each game,
someone, usually a coach, decides what kind of
play to execute. In this sense the offensive side
of football bears similarity to two-alternative
operant choice. The parallel is accentuated by
the fact that in choosing plays coaches
routinely consider the success of previously
selected plays, which is measured in terms of
yards gained toward the goal (Edwards, 2002).
Consistent with these observations, in applying
the GME Reed et al. used the number of
passing plays executed and rushing plays
executed as the B terms, and the yards gained
from those plays as the r terms, hence:

log (M) — alog (%> +logh. (2)

Playspush Yardsg,g,

Reed et al. (2006) found that, as Equation 2
predicts, the plays-selected and yards-gained
ratios were positively correlated in a variety of
cases (i.e., good reliability of fit). With regard
to explanatory flexibility, Reed et al. also
compared play selection across three offensive
situations. Each time a football team receives
possession of the ball, it has four opportuni-
ties, or downs, to either score or advance the
ball 10 yards, in which case another set of four
downs is earned. Most often, if a new set of
downs has not been earned by the completion
of third down, then fourth down is reserved
for a kicking play that transfers possession of
the ball to the other team, leaving three downs
on which passing and rushing plays tend to
occur. According to football sources, rushing
plays are especially attractive on first down,
and passing plays are preferred for many third
down situations (Allen, 2002; Westering,
2002). Consistent with this conventional wis-
dom, Reed et al. found a rushing bias on first-
down plays and a passing bias on third-down
plays, with an intermediate log b estimate for
second down (although note that these effects
were evaluated strictly through visual inspec-
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tion of graphed parameter estimates, leaving
unclear whether bias changes across down
were statistically reliable). Taken at face value,
these effects appear to show how a theoreti-
cally important term of the GME maps onto a
situation-specific phenomenon of practical
importance to football.

The present investigation sought to extend
Reed et al.’s (2006) application of the GME to
situation-specific play selection in football.
The general strategy was to identify several
types of game situations that football experts
believe are relevant to play selection, and
within each to identify several levels or
categories across which play selection is
thought to vary. The GME was used to evaluate
play selection for each level of each of these
situational variables so that, consistent with a
consideration of explanatory flexibility, the
resulting sensitivity and bias parameters could
be compared across levels.

Descriptive Analysis

Consistent with the approach of Reed et al.
(2006), the GME (Equation 2) was applied to
play selection in a descriptive analysis of
archival game statistics from the National
Football League. It is axiomatic that the study
of complex everyday behavior often precludes
the use of experimental methods. Behavior
analysts have, at times, been accused of
preferring research questions that map conve-
niently onto preferred research designs (Baer,
Wolf, & Risley, 1987), an approach that yields
principles of debatable generality (e.g., Critch-
field, Haley, Sabo, Colbert, & Macropoulis,
2003; Critchfield & Kollins, 2001; McDowell &
Caron, 2010a). When experiments cannot be
conducted, descriptive methods can shed light
on behavior that, by virtue of the importance
placed on it by laypersons, demands attention
by any science claiming to offer a general-
purpose explanation of behavior.

Not surprisingly, many translational exten-
sions of the GME have employed descriptive
designs in which neither the behavior of
interest nor the putative reinforcers was under
investigator control (e.g., Alferink et al., 2009;
Borrero et al.,, 2007; McDowell & Caron,
2010a, b; Reed et al., 2006; Romanowich et
al., 2007; Vollmer & Bourret, 2000). The
assumption underlying such studies, of course,
is_that operant choice manifests similarly in
everyday and laboratory environments. Be-
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cause correlation does not support causal
inferences, descriptive analyses cannot verify
that this assumption is true (see Alferink et al.,
2009; Critchfield & Reed, 2009; Reed et al.,
2006; Vollmer & Bourret, 2000), but they can
provide disconfirming evidence. In the pres-
ent case, for instance, the GME could fail to
adequately describe football play selection.
Such an outcome would be unsurprising given
that, in the everyday world, contingencies do
not exactly parallel laboratory reinforcement
schedules, and many factors operate in addi-
tion to those specified by Equation 2 (Reed et
al., 2006).

This highlights a further difference between
laboratory investigations and field extensions.
Laboratory procedures minimize extraneous
variance to give effects of interest every
possible opportunity to emerge (Sidman,
1960). Uncontrolled natural environments
confer no such advantage. As Reed et al.
(2006) noted with respect to football, ‘“Few
everyday environments are as complex and
multiply determined as those in which elite
sport competition occurs.... Many variables are
believed to influence sport performance....
Any lawful principle or functional relation
found to cut through all of these variables to
reliably predict sport performance would be
noteworthy indeed” (pp. 281-282). In this
limited sense, descriptive, translational investi-
gations speak more directly to the possible
robustness of functional relations than do
highly controlled laboratory experiments
(e.g., see McDowell & Caron, in press-a).

Overall, while descriptive methods cannot
show unambiguously that operant choice
manifests similarly in dissimilar environments,
they can provide intriguing circumstantial
evidence to this effect. From a scientific
perspective, circumstantial evidence is better
than no empirical evidence. Historically in
behavior analysis, a common approach to
examining complex everyday behavior has
been the narrative essay that Skinner (e.g.,
1953, 1957, 1991) popularized. Such treatises
can be colorful and conceptually expansive,
but they are not empirical and therefore easily
undermined, as critics may dispute even the
basic premises and observations that underpin
narrative accounts (e.g., see Chomsky’s, 1959,
review of Skinner’s Verbal Behavior). By con-
trast, descriptive analyses reveal patterns in
everyday behavior that any theoretical inter-
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pretation (whether inspired by basic behavior-
al research or not) must be able to explain
(Alferink et al., 2009). In this way they serve as
a valuable tool in the effort to analyze the
many complex everyday situations that have
received limited empirical attention in behav-
ior analysis (e.g., Mace, Lalli, Shea, & Nevin,
1992).

Evaluating the Situational Modulation of
Fitted Parameters

The strategy of the present study was to fit
the GME to naturally occurring football data
to evaluate whether fitted parameters change
systematically across game situations. A quan-
titative model’s fitted parameters are informa-
tive only if the model accounts for substantial
variance in behavior (Lunneborg, 1994), so in
the present investigation sensitivity and bias
estimates could be evaluated only if the GME
accounted for a nontrivial percentage of
variance (R%) in play selection. For present
purposes we define ‘‘nontrivial”” in the context
of previous field applications in which the
GME typically has accounted for =40% of the
variance in a behavior of interest (Billington &
DiTommaso, 2003; Borerro et al, 2007; Bulow
& Meller, 1998; Reed et al, 2006). If this is the
case across many football game situations then
reliability of fit will have been demonstrated
and comparisons of parameter estimates facil-
itated.'

Assuming that the GME accounts for a
nontrivial amount of variance in play selection
in all of the game situations considered here,
play selection tendencies still might not be
associated with systematic changes in bias or
sensitivity (e.g., perhaps the effects described
by Reed et al., 2006, were visually suggestive
but not statistically reliable). Such a finding
could arise if situation-specific play-selection
preferences simply reflect points along a single

'A related issue is whether the GME accounts for
different amounts of variance in play selection across game
situations. Such an outcome would raise interesting
questions about whether matching is differentially relevant
to different game situations. Unfortunately, it appears that
no objective means exists to determine whether R’ values
differ significantly when the same model is fitted to
different data sets (instead, theorists have focused on
comparing the fits to the same data of models with
different numbers of fitted parameters; see Lunneborg,
1994; Motulsky & Christopoulis, 2006). For this reason we
reportR values butofferno prediction.or.commentabout
the possibility of systematic R® effects.
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matching function (e.g., see Critchfield &
Reed, 2009, Figure b and associated text).
Relative frequency of passing and rushing
plays might vary across game situations only
as a function of relative success in earning
yards. If the GME’s fitted parameters do not
vary systematically across game situations, then
the GME, as applied to football play selection,
could have good reliability of fit (consistently
good R?) but poor explanatory flexibility.

Alternatively, the GME’s fitted parameters
might detect situation-specific variations in
play selection that football observers regard
as interesting. We expected that any such
effects would manifest in terms of bias (log b)
rather than sensitivity (a@). Sensitivity can be
said to reflect “‘knowledge’ (i.e., discrimina-
tion) of contingencies (e.g., Baum, 1974;
Davison & Nevin, 1999), which increases with
both accumulated experience in adjusting to
contingencies (e.g., Todorov, Olivera Castro,
Hanna, de Sa, & Barreto, 1983) and the quality
of discriminative stimuli signaling behavior—
consequence relations (e.g., Davison & Nevin,
1999). It may be relevant, therefore, that the
coaches who select most NFL plays have
extensive experience in football and, thus,
extensive direct exposure to the game’s
contingencies. They also benefit from the
supplemental stimulus control exerted by
detailed statistics and other information (e.g.,
video records of past performances) about
what kinds of plays tend to succeed in what
situations. Because of these factors, a ceiling
effect may exist in which sensitivity, while not
optimal, may be as high as it can be under the
naturalistic conditions of NFL play selection.
Thus, in the present investigation sensitivity
was not expected to vary systematically as a
function of game situations.

Bias (see Baum, 1974) is thought to result
from systematic changes in aspects of the
behavior-consequence relations other than
those subsumed by the r terms of Equation 1.
In the present study, r terms reflected yardage
gained from passing and rushing. Although
football experts sometimes allude to situation-
specific factors other than mean yardage gains
that may influence play selection (e.g., West-
ering, 2002), it is not always clear how these
factors map onto the reinforcement-based
conceptual framework of the matching rela-
tion. For this reason, the present investigation
focused primarily on identifying bias effects in
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play selection. We will return to the problem
of a conceptual analysis of these effects in the
Discussion.

METHOD

Data Transcription

Data were retrieved, and organized into
spreadsheets for purposes of analysis, between
October 13, 2007 and June 20, 2008 from
http://www.espn.com. Recorded for each play
of 192 targeted games (see below) was whether
a pass or a rush was executed; the yardage
gained; and the situational variables described
below. Prior to data collection six transcribers
read printed instructions (available on re-
quest) and collectively recorded and discussed
a small sample of plays before individually
transcribing a sample game. An investigator
then checked for errors by comparing tran-
scriber records to the data source, and
provided feedback and answered questions.
This process required approximately 1 hr.
Thereafter transcribers created the data set,
with each individually transcribing a different
subset of the targeted games. For five random-
ly-selected games per transcriber, the experi-
menters compared transcriber records to the
data source in order to check for transcriber
drift. None was detected. Agreement (defined
as exact match between the source and the
transcribed data) occurred on 96.8% to 99.8%
of several hundred data entries (five variables
for at least 60 plays) per game. Errors, when
they occurred, consisted almost exclusively of
manual mistakes (e.g., typing ‘332" instead of
32" or accidentally replacing a number with
a letter located beneath it on a QUERTY
keyboard) rather than transcribing a value
from the wrong location in the data source.
When such errors were detected in records
other than those on which accuracy was
systematically evaluated, they were corrected
by consulting the data source.

Limitations of the Data Source

The archival statistics on which the analyses
were based have two limitations that could
affect the precision of the present analyses.
First, football statistics do not specify exactly
who selects each play. On each team, a single
individual (the offensive coordinator) is nom-
inally charged with play selection (McCorduck,
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1998); in this sense, play selection is individual
behavior. Yet in at least some circumstances
for some teams, multiple individuals may
influence play selection, although this is not
reflected in public data sources. For purposes
of the present investigation, each team’s
offensive staff was considered as a single,
collective ‘“‘organism’ (i.e., a group whose
behavior, by virtue of exposure to shared
contingencies, presumably was under common
control). This approach is consistent with the
findings of investigations in which several
individuals working under a shared contingen-
cy produced collective behavior that was
patterned like that exhibited by laboratory
subjects working individually under similar
contingencies (e.g., Buskist & DeGrandpre,
1995; Critchfield, Haley, Sabo, Colbert, &
Macropoulis, 2003; Graft, Lea, & Whitworth,
1977; Grott & Neuringer, 1974; Mace et al.,
1992; Sokolowski, Tonneau, & Friexi I Baque,
1999; Wolff, Burnstein, & Cannon, 1964).
Nevertheless, the probable intermingling of
play-selection behavior of multiple individuals
was expected to adversely affect the percent-
age of variance for which the GME accounted.
Second, the data source categorized plays as
passing or rushing based on what actually
happened, not necessarily what was intended
by the team’s play selector(s). For instance,
imagine that a pass play is planned but after
the play begins the quarterback attempts to
run instead. Such a play is identified in the
record as a rushing play, even though a choice
initially was made to select a passing play. Such
eventualities probably impose unexplained
variance on a matching analysis beyond what
typically is encountered in the laboratory and
in field settings where no analogous coding
ambiguities arise (e.g., analysis of basketball
shot selection; Vollmer & Bourret, 2000).

Levels of Analysis

Season-aggregate data. Archival sources tradi-
tionally include NFL offensive statistics pooled
across an entire season. Recorded for each
team in the 2006-2007 season were the total
number of rushing and passing plays that were
executed and the total number of yards gained
from each type of play in each game of a 16-
game season.

Play-by-play data. For each team, six games
from the 2006-2007 season were randomly
chosen from which to extract play-by-play data.
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For purposes of this analysis a game was
defined as the offensive performance of one
team excluding any overtime (because special
rules apply to offense during overtime and
because overtime data were not always avail-
able from our source). For each offensive
opportunity, the type of play (passing or
rushing) and the number of yards gained
were recorded (other types of plays are
possible in which the ball is kicked but these
were not considered relevant to the present
investigation). Overall, 192 games were evalu-
ated (6 games for each of 32 teams) in each of
which a team’s offense conducted approxi-
mately 60 rushing or passing plays, for a
corpus of more than 12,000 total plays. This
sample was expected to support analyses in
which play selection was examined as a
function of several game situations, an as-
sumption that was largely but not universally
borne out. Occasionally, a team had limited
offensive opportunities in one of the catego-
ries. If fewer than 15 plays were available for
analysis, the team was dropped from all
categories of the relevant situational variable;
specific instances are indicated below.

Each play was categorized according to the
following types of game situations: down, yards
needed to earn a new set of downs, time
remaining, score, and field position. For each
variable three categories were developed to
reflect conventional wisdom about football as
represented in professional publications on
football, primarily authored by successful
coaches and others with long-term involve-
ment with the game at high levels of compe-
tition (e.g., Allen, 2002; Bryant, 1999; Kehres,
2006; Levy, 1999; McCorduck, 1998; Teaff,
1999; Westering, 2002). Hereafter, for econo-
my of expression, these individuals will be
referred to as football “‘experts.”

Situational Variable Categories

Down. This variable, defined above, was
included in the present study to determine
whether the results of Reed et al. (2006) could
be replicated for a different season of play.
The levels were first down, second down, and
third down.

Yards needed. The distance that a team must
advance the ball in order to earn a new set of
downs varies from play to play. The nominal
range is 1 to 10 yards, but after losing ground
through penalties or unsuccessful plays a team
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may need more than 10 yards to earn a new set
of downs. Football experts suggest that play
selection usually is rushing-oriented when =4
yards are needed (e.g., Allen, 2002; McCor-
duck, 1998). This may be the case in part
because the average gain from an NFL rushing
play is about 4 yards, with relatively little
variance and few plays that yield no yards or
a loss of yards (Rockerbie, 2008). By contrast,
NFL passing plays yield about 7 yards on
average, but the variance is high, meaning that
some pass plays yield considerably bigger gains
(Rockerbie, 2008). Perhaps for this reason,
plays on which many yards are needed to earn
new downs are regarded as passing-oriented
(e.g., Allen, 2002). For purposes of the present
analysis of yards needed the levels were 1-4, 5—
10, and >10.

Time remaining to play. NFL games are
divided into four 15-min quarters. Play pro-
ceeds without major interruption between the
first through second quarters (collectively
called the first half) and during the third
through fourth quarters (collectively called
the second half). Between the halves is a
suspension of play (called halftime) lasting at
least 12 min (sometimes longer to accommo-
date factors such as the broadcasting of
television commercials). Football experts re-
gard the last 2 min of each half as unusual
given that opportunity to score is waning (e.g.,
Fulmer, 2002; Levy,1999; Tranquil, 2006;
Westering, 2002). Passing plays are said to be
preferred during this interval for two reasons
(McCorduck, 1998). First, pass plays have the
potential to gain many yards quickly. Second,
when a pass is not caught (incomplete) the
game clock stops briefly, allowing the offensive
team to regroup for the next play without
expending game time. By contrast, at the end
of rushing plays, the game clock continues to
operate. The present analysis of time remain-
ing thus focused on the final 2 min of each
half. Because relatively few plays can occur
during these brief intervals, the final 2 min of
the two halves were combined to increase the
relevant sample. For consistency, data from
the remainder of the 2nd and 4th quarters
were pooled prior to analysis, as were data
from the entire 1st and 3rd quarters. Thus, the
present analysis focused on time remaining in
a half, and the levels were >15:00 (1st and 3rd
quarters combined), 2:01-15:00 (2nd and 4th
quarters combined, minus the final 2 min),



SITUATIONAL MATCHING

and =2:00 (final 2 min of the 2nd and 4th
quarters combined). Two teams (Arizona and
Atlanta) were excluded from this analysis
because of insufficient data (as defined in
the preceding section), leaving N = 30 teams.

Score. According to conventional football
wisdom teams that are winning tend to select
plays that will minimize the chance of losing the
ball through turnover and consume as much
game time as expediently as possible (e.g.,
Kehres, 2006; Levy, 1999; McCorduck, 1998).
Both factors suggest rushing plays because they
tend to consume more time from the game
clock than passing plays and, as Reed et al.
(2006) reported, interceptions (passes caught
by the other team) are more common than
rushing-related lost fumbles (when an oppo-
nent picks up a ball that was dropped). Teams
that are losing are under pressure to use game
time efficiently and to use each play to gain as
many yards as possible toward scoring. Both
factors suggest passing plays because they may
allow the game clock to be stopped briefly, and
the average gain is larger for passing plays than
for rushing plays (Rockerbie, 2008). For the
present analysis of score, the levels were
winning, tied, and losing. One team (Tampa
Bay) was excluded from this analysis because of
insufficient data, leaving N = 31 teams.

Field position. While on offense, a team must
attempt to move from wherever it receives
possession of the ball to the goal line. Field
position specifies the location on the field
from which a given play is initiated. A football
field is 100 yards long, ranging from a target
team’s own goal line (which the opponent
must cross to score) to the opponent’s goal
line (which the target team must cross to
score). For present purposes field position will
be described in terms of yards separating a
team from the opponent’s goal line, ie., a
scale of 1 to 99 (the ball cannot be positioned
on a goal line, and in football records field
position is rounded to the nearest yard).

Football experts do not agree about the
number of functional play selection zones that
exist on the field or the strategies that are
preferred for these zones. The present analysis
focused on two zones that are discussed with
some consistency across experts, who generally
agree that plays executed at the extreme ends
of the field should minimize turnovers and
avoid _zero- or negative-yardage outcomes
(Bryant, 1999; Westering, 2002; Tressel &
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Bollman, 2000; Tressel, 2000). When a team
is near its own goal line, turnovers create
scoring opportunities for the other team, while
yardage gains increase the space available
behind the line of scrimmage (the location
from which a play begins) for the offensive
team to execute plays. Additionally, the closer
a team is to its own goal line, the greater the
risk of being tackled behind it, creating a
safety that scores two points for the other
team. When a team is near the opponent’s
goal line, gaining yards means getting closer to
scoring, and turnovers forfeit scoring oppor-
tunities. Both cases suggest advantages of
selecting rushing plays.

For present purposes, ‘‘near the opponent’s
goal line” was defined as 1-8 yards from the
opponent’s goal line, and ‘“‘near one’s own
goal line”” was defined as 83-99 yards from the
opponent’s goal. The rest of the field (9-82
yards from the goal) was treated as a single
zone, even though many experts recommend
play-selection strategies for specific portions of
this zone (e.g., Bryant, 1999). We conducted
numerous exploratory analyses that divided
the 9-82 zone into subzones but found no
consistent differences in play selection among
them. Note that, because the 1-8 category
encompasses only a small portion of the field,
relatively few plays per game occur there, and
consequently six teams (Baltimore, Green Bay,
Jacksonville, New York Giants, Philadelphia,
and Washington) were excluded from this
analysis because of insufficient data in this
category, leaving N = 26 teams.

RESULTS

Season-Aggregate Data

Figure 1 (top) summarizes NFL play selec-
tion during the 2006-2007 regular season,
Consistent with an approach employed by Reed
et al. (2006), the GME was fitted to a function
involving one data point for each NFL team (N
= 32), with each data point representing the
season-aggregate statistics of one team. When
Reed et al. applied the GME to data from the
2003-2004 season, the line of best fit, y = .72x
— .13, accounted for 75.7% of the variance in
play selection. To expand this historical frame
of reference, we repeated this analysis for other
years in the decade of 1999-2008, and found
that 2006-2007 outcomes fell within the ranges
for sensitivity (.50 to .73), bias (—.14 to —.06),
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Fig. 1. Relationship between relative play frequency
and relative yards gained through those plays, with both
expressed as passing/rushing, for the 2006-2007 National
Football League season. Each data point shows the season-
aggregate data from one team. Shown in gray are lines of
best fit as determined by applying the generalized
matching equation (Equation 2) through least-squares
linear regression. Top: Based on data from all 16 regular-
season games. Bottom: Based on six randomly-selected
games per team.

and variance accounted for (54.9% to 80.5%).
As in other recent years, three features were
evident in the 2006-2007 data: undermatching,
a bias for selecting rushing plays (negative log &
estimate), and a majority of play-selection
variance accounted for by Equation 2. Overall,
the 2006-2007 season may be considered a
representative sample of contemporary NFL
competition.

Because the analyses involved fitting a single
matching function to data from multiple
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teams (Figure 1 and below), it is reasonable
to ask how well individual cases are represent-
ed by such an aggregate function. Figure 1
(top) provides a partial answer. To the extent
that a single function economically subsumes
all 32 NFL teams, these teams may be said to
exhibit a common form of global play-selec-
tion matching (in which case aggregating
them does not intermingle incompatible
functions). This assumption is consistent with
the finding of Reed et al. (2006) that matching
functions of individual teams of the 2003-2004
season usually were similar to a function that
aggregated all of the teams. Reed et al. created
individual-team functions by treating each of a
team’s regularseason games as a separate
observation. We replicated this approach for
the 2006-2007 season; Figure 2 summarizes
the results. Central tendencies for sensitivity
and bias were similar to the estimates based on
the season-aggregate function (Figure 1, top),
although Equation 2 tended to account for
less variance in individual-team functions
(median = 56%; not shown in Figure 2) than
in the season-aggregate function. This out-
come we attribute in part to the relatively small
number of plays available for analysis in each
game. Overall, Figure 2 is consistent with the
view that interteam similarities in matching
allow data to be aggregated from different
teams (for a sophisticated empirical and
conceptual evaluation of the underlying issues,
see McDowell and Caron, 2010a, who conclud-
ed that aggregation of the sort employed here
is, in at least some cases, defensible).

Figure 1 (bottom) summarizes NFL play
selection during the six games per team that
were randomly selected for situational play-
selection analysis. As in the top panel, the
GME was fitted to a function involving one
data point for each NFL team (N = 32), with
each data point representing the season-
aggregate statistics of one team. Slope and
bias estimates were similar to those derived
from the full 16-game season, and Equation 2
accounted for a similar amount of play-
selection variance. By these broad metrics,
the six-game sample was representative of the
full season from which it was drawn.

Game Situations

For each of the situational variables, each
team’s data were obtained by pooling plays
from the six targeted games. Consistent with
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Fig. 2. Summary of fitted parameter estimates ob-
tained from fitting the generalized matching equation
(Equation 2) to the data from each of 32 National Football
League teams, with each of a team’s sixteen 2006-2007
regular-season games as an observation.

an approach employed by Reed et al. (2006),
for each category of each situational variable
(see below), the GME was fitted to a function
involving one data point for each NFL team,
excluding those (noted above) for which
insufficient data were available.? For instance,

*For situational analyses, functions were fitted to the
data of multiple teams, rather than individual teams,
because of a limited supply of plays available to analyze at
the team level. Taking Figure 2 as a frame of reference, we
might have attempted to fit Equation 2 to data for each
team, with different opponents counting as observations.
This would yield a pool of roughly 60 plays per
observation, which in turn would be divided across three
situational categories. Plays are not distributed evenly
across the categories for any of our five situational
variables, so we expected to be unable to complete an
analysis for most teams for most variables. To illustrate, in
the present corpus based on six games, teams attempted
an average of fewer than four eligible plays per game
(excluding kicking plays) from within 1 to 8 yards of the
opponent’s goal, far too few for the ratio-based analysis of
Equation 2. To address this problem, data might be
combined from different seasons, although professional
football rosters and coaching staffs are notoriously fluid
from season to season, in which case play selection and
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for the variable down, there were three GME
analyses, one each for first, second, and third
down plays. For each level of each variable, the
ratio of passing and rushing plays was consid-
ered as a function of the ratio of yards gained
from passing and rushing as per Equation 2. In
each case, least squares linear regression was
used to determine the line of best fit and to
estimate the fitted parameters.

Goodness of fit. Figure 3 summarizes the
success of the GME in describing play selection
across levels of several types of game situations.
The figure shows the percentage of variance
for which the GME accounted in each analysis;
the leftmost portion of the figure provides a
frame of reference by showing the same
outcome for all plays (both 16-game and 6-
game totals). The remaining columns show
outcomes for levels of the situational variables.
The GME accounted for a majority of variance
in most game situations (and >40% in all
cases), but typically less than for all plays
combined (Figure 1). The latter outcome may
reflect, in part, the relatively small sample of
plays involved in these subordinate analyses.
Note that, across categories, the number of
plays available for analysis (pooled for all
teams) was positively correlated with the
amount of variance for which the GME
accounted (r = +.50). Also shown in Figure 3
are results of an analysis by down for the 2003—
2004 season by Reed et al. (2006; open data
points). All outcomes of the present situation-
al analyses fell within the range of that
previous analysis.

Statistical evaluation of situational variance in
sensitivity and bias. Comparisons of sensitivity
(slope = a) or bias (intercept = log b) across
levels of each situational variable employed an
inferential statistical test based on analysis of
covariance (ANCOVA; Motulsky & Christopou-
lis, 2006; Zar, 1999; for computational details
and an example of application to behavioral
research, see Magoon & Critchfield, 2008). For
each type of game situation, the test began
with an omnibus ANCOVA (alpha = .05)

play success for different seasons would represent the
behavior of different personnel (the same drawback of the
present corpus). Overall, we chose the present analytical
strategy because alternatives appeared to be both more
effortful and less likely to shed light on the research
question, but we acknowledge that our approach pre-
cludes the examination of potentially interesting between-
team differences in situational play-selection.
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selection data for each level of five types of game situations. See text for details.

comparing sensitivity estimates across all cate-
gories. With this test, a statistically significant
sensitivity (slope) effect has two implications.
First, the same test can be used in paired
comparisons of sensitivity among the levels of
the same predictor variable (in the present
case, with the Bonferroni adjustment of alpha
= .05 divided by the number of comparisons
as a control for Type 1 error risk). Second,
meaningful tests of bias (intercept) are pre-
cluded because slope and intercept are con-
founded in linear regression (Zar, 1999; for
approaches that more readily accommodate

intercept effects, see Milliken & Johnson,
2002). No omnibus sensitivity effects were
found in the present investigation, which
allowed the ANCOVA analysis to be used to
evaluate bias effects.

As with sensitivity tests, for bias estimates a
significant ANCOVA (alpha = .05) led to
paired comparisons among the levels of a
given situational variable. Each paired com-
parison began with a sensitivity test comparing
two levels of a given variable. If a significant
difference in sensitivity estimates was identi-
fied (alpha = .05), no bias comparison was
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Fig. 4. Play-selection sensitivity and bias estimates for each level of five types of game situations. Within each panel,
pairs of data points that do not share a letter code are significantly different according to paired comparisons; absence of

letter codes indicates no statistically significant effects.
statistical analyses.

conducted and no bias effect was assumed
because of the slope—intercept confound noted
above. Note that the decision criterion for these
paired sensitivity comparisons (.05) was not
adjusted for Type 1 error risk because this
created a conservative criterion for determining
pairwise bias effects (which could be evaluated
only if associated slope effects were not
significant). Because omnibus ANCOVAs yield-
ed no significant results for sensitivity, in paired
comparisons a low p value for sensitivity was not
taken as evidence of an effect. For each paired
comparison, if a significant sensitivity effect was
absent, the associated bias comparison was
conducted with alpha adjusted as described
above to reduce Type 1 error risk.

Figure 4 shows the sensitivity and bias
estimates for each level of the five types of
game situations. Table 1 summarizes the out-
comes of omnibus ANCOVA analyses for each
of these variables. For each type of game
situation, the omnibus ANCOVA revealed no
significant slope effect (top row of panels in
Figure 4) and a significant bias effect. For this
reason the present discussion will focus on bias
effects as revealed in paired comparisons
among levels of each type of game situations
(for statistical details of these comparisons, see

See text, Table 1, and the Appendix for details of the

the Appendix). Results are summarized in the
bottom row of Figure 4 through letter codes.
For each type of game situation, data points
that do not share a common letter code are
significantly different.

Figure 4 shows that (1) play selection was
biased toward rushing on first down and
biased toward passing on third down, with
an intermediate log b estimate on second
down. This replicates the pattern described
by Reed et al. (2006) based on visual inspec-
tion of graphed data, and improves upon
Reed et al. by showing that all differences
among log b estimates for the three downs
were statistically reliable. Other findings in-
clude that play selection was (2) biased toward
passing when 10 or more yards were needed to
obtain a new set of downs, and biased toward
rushing when =4 yards were needed; (3)
biased toward passing when 2 min or less
remained to play in a half, and otherwise
biased toward rushing; (4) essentially unbiased
when a team was losing, and otherwise biased
toward rushing; and (5) strongly biased toward
rushing when a team had possession within 8
yards of the opponent’s goal line, with a less
pronounced rushing bias at other field loca-
tions.
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Table 1

Results of omnibus ANCOVA tests of sensitivity and bias estimates for each of five types of game
situations. Significant ANCOVAs were followed by the paired comparisons that are summarized

in the Appendix.

Situational Variable Test F df p
Down Sensitivity 0.17 2,90 .845
Bias 36.20 2,92 <.0001*
Yards Needed to Earn New Downs Sensitivity 1.09 2,90 .340
Bias 29.97 2,92 <.0001*
Time Remaining in Half Sensitivity 0.56 2,84 0.57
Bias 27.41 2,86 <.0001*
Score Sensitivity 0.07 2,87 0.93
Bias 16.69 2,89 <.0001*
Field Position Sensitivity 1.48 2,72 0.23
Bias 9.44 2,74 .0002%*

* Statistically significant (alpha = .05)

DISCUSSION
Generality of the Matching Relation

Although football experts often describe
situation-specific patterns of play selection, it
was not clear at the outset of this investigation
how (or whether) these patterns might trans-
late into the outcomes that are examined in a
matching analysis. One possibility is that the
matching relation, described previously for
season-aggregate data by Reed et al. (2006),
would not hold for all specific game situations.
Consistent with the findings in several other
applied domains (e.g., Billington & DiTom-
maso, 2003; Bulow & Meller, 1998), however,
the GME accounted for about 40% to 70% of
the variance in play selection across the various
game-situation categories. The percentage of
play-selection variance for which the GME
accounted did not appear to vary systematically
across the levels of these situational variables,
suggesting reliability of fit.

Another possible outcome was that play
selection might vary across game situations,
but strictly in accordance with a single
covariant relationship between relative ratios
of yards gained and plays selected. That is,
perhaps what distinguishes the various game
situations in which play selection occurs is the
relative yards-gained ratio in Equation 2, with
play selection shifting upwards or downwards
along a single matching function. Contrary to
this view, however, significant changes in the
GME’s bias parameter were associated with all
five types of game situations. This suggests that
some NFL game situations are best described
with a unique matching function rather than
as part of a single general function. Such

mapping of theoretical parameter to face-valid
game situations establishes a degree of explan-
atory flexibility for the GME as applied to
football play selection.

The effects just mentioned shed light on
conventional football wisdom by providing an
alternative to conventional ways of character-
izing play selection. Alamar (2006) illustrated
the traditional perspective by speaking of a
general ‘‘passing premium puzzle” in the
NFL, in the form of ‘‘a balance between the
number of passing and running plays, even
though there is a greater expected return in
passing plays” (unpaginated abstract). From
this perspective, NFL teams pass too little and
rush too much. A matching analysis precisely
defines ‘‘rushing too much” in terms of the
bias parameter of Equation 2 (we take up the
question of why this particular outcome may
arise in a later section). Although football
experts often speak of ‘‘rushing situations’” or
‘‘passing situations,” in the present findings
these situations are distinguished behaviorally,
not in terms of raw preference, but rather in
terms of deviations from the level of prefer-
ence that is predicted based on relative
“reinforcement’” (i.e., bias). Illustrating this
distinction are five cases, among those shown
in Figure 4, in which passing occurred on
more than 50% of total plays although, in
GME terms, play selection actually was biased
toward rushing. These cases were: second
down, b5-1 yards needed for a first down;
2:01-15:00 remaining in the half, score tied,
and ball positioned 9-82 yards from the goal.

No situation-specific effects in play-selection
sensitivity were identified. We suggested previ-
ously that this may reflect a ceiling effect in
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which sensitivity of NFL play selection has
reached a practical maximum through exten-
sive experience and access to detailed discrim-
inative stimuli (e.g., statistics and game films).
This assumption does not preclude that
sensitivity effects might be associated with
NFL game situations other than those consid-
ered here; it merely predicts that such effects
should be uncommon. Our perspective also
anticipates situation-specific sensitivity effects
for less experienced football play selectors
(e.g., novice coaches); this is an interesting
direction for future research.

Complexity of Play Selection

Although the present analyses were more
detailed than those of the Reed et al. (2006)
study that inspired them, a football expert
might be dissatisfied with our approach of
evaluating selected types of game situations
separately, because play selection is assumed to
reflect the joint influence of many types of
game situations (McCorduck, 1998). For ex-
ample, preference for passing versus rushing
plays is thought to be especially volatile on
third down, depending on whether the num-
ber of yards needed to earn new downs is large
or small, respectively (Allen, 2002; Reed et al.,
2006). To the preceding a statistician might
add that our analyses all drew upon the same
sample of NFL plays, so to the extent that
various game-situation variables are intercor-
related their effects on play selection would
not be independent. A brief example may
illustrate the problem. In our analysis of score
we examined play selection when a game is
tied. All games begin with a score of 0-0,
however, so plays chosen early in a game would
be represented disproportionately in this
category. Because we found that rushing bias
was prevalent early in NFL games, our “‘tied”
category might have underestimated actual
preference for passing.

A logical resolution of this problem lies in
multivariate methods (Lunneborg, 1994) in
which the type of play selected is the binary
predicted variable (making logistic regression
suitable) and two or more game situations are
the predictor variables. Such methods could
evaluate the relative strength of association
between various game situations and play
selection—but they would not necessarily
address the matching relationship and its
conceptually-important  fitted  parameters.
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Within the matching literature, multivariate
issues have been addressed by proposing
concatenated models that subsume several
choice-influencing variables (e.g., Baum,
1974; Hamblin & Miller, 1977; Herrnstein,
1961). Concatenated models can be imagined
that simultaneously consider many football
game-situations in an analysis of play-selection
matching, although two challenges confront
the development of such models. First, it is not
always clear how the various factors that
distinguish football game situations translate
into the behavioral concepts that matching
equations are intended to represent. Second,
due to limited theory development and em-
pirical testing, much remains to be resolved
about how to construct concatenated match-
ing models (e.g., Critchfield, Paletz, Mac-
Aleese, & Newland, 2003; Davison, 1988;
Davison & Hogsden, 1984; Davison & Nevin,
1999; Grace, 1999; Shahan, Podelsnik, &
Jiminez-Gomez, 2006).

Plausibility of an Operanit-Choice Interpretation

In developing and reporting the present
study we took at face value Reed et al.’s (2006)
operant-choice interpretation of football play
selection, but doing so required a number of
conceptual leaps. The most general issue is
that a descriptive analysis cannot support
strong cause—effect inferences like those that
derive from experiments. An operant inter-
pretation implies that play selection tracks
yards-gained reinforcement (or ‘‘expecta-
tions’” thereof that are derived from statistics
and game films), but the matching relation-
ship could be spurious if the converse is true.
Imagine that, for each NFL team, passing and
rushing plays produce different average yard-
age gains, although the numbers of pass and
rush plays selected are controlled by some-
thing other than these gains (e.g., coach
superstitions, instructions from a microman-
aging team owner, etc.). Because total yards
gained is the product of the number of plays
selected and the average yards gained from
those plays, relative ratios of behavior and
reinforcement would covary as Equations 1
and 2 stipulate, but without the influence of
behavior-consequence relations that are the
GME’s conceptual scaffolding. A spurious-
correlations account cannot be ruled out in
descriptive studies, but is directly testable
through simulation methods (e.g., Rubenstein
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& Kroese, 2008). The question of interest is
whether it is possible to ‘““manipulate’ the play
selection of hypothetical play selectors—with
yardage gains modeled after those of real
football teams but no reinforcement effects
assumed—to create matching outcomes like
those observed for real teams. If so, then an
operant interpretation is undermined.
Another useful approach is to compare the
patterns revealed in a descriptive analysis to
benchmark effects in operant-choice experi-
ments. Here the situational modulation of
fitted parameter estimates is of special interest.
To illustrate, consider that, in matching
analyses of basketball shot selection, prefer-
ence has been defined in terms of the relative
frequency of two-point versus three-point shot
attempts. In laboratory matching experiments,
unequal reinforcement magnitudes create bias
(e.g., Landon, Davison, & Elliffe, 2003). By
analogy, a three-point shooting bias is expect-
ed in basketball, and has in fact been widely
observed (e.g., Alferink et al., 2009; Hitt,
Alferink, Critchfield, & Wagman, 2007,
Romanowich et al., 2007; Vollmer & Bourret,
2000). Such empirical parallels lend a degree
of confidence to an operant interpretation.
Evaluating the plausibility of an operant
interpretation of play selection thus requires
close attention to specifics of the operant
choice literature, which does not always
provide clear guidance. For example, choice
is studied most often in concurrent schedules
of constant-magnitude, variable-interval rein-
forcement (Davison & McCarthy, 1988; Mazur,
1991), whereas the schedules governing the
yardage ‘‘reinforcers’” that were considered
here and by Reed et al. (2006) probably are
ratio based and involve variations in relative
magnitude (based on mean yards per play for
passing versus rushing). If, as is widely be-
lieved, concurrent ratio schedules ‘‘yield near-
ly exclusive responding to the schedule that
yields richer reinforcement” (Vollmer &
Bourret, 2000, p. 144), then the orderly
matching functions of the present study may
be at odds with laboratory principles. Yet the
extent to which the matching relation emerges
in concurrent schedules with ratio-like prop-
erties remains a matter of some debate
(Green, Rachlin, & Hanson, 1983; Herrnstein
& Heyman, 1979; Herrnstein & Loveland,
1975; LaBounty & Reynolds, 1973; MacDonall,
1988; Rider, 1979; Savastano & Fantino, 1994;
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Shimp, 1966; Shurtleff & Silberberg, 1990).
For discussions of how some of the relevant
issues apply to sport behavior, we refer the
reader to Reed et al. (2006) and Vollmer and
Bourret (2000).

Questions also may be raised about whether
behavior allocation matches the relative ratio
of reinforcement magnitudes. A small body of
reports indicates that for nonhumans it does
(e.g., Davison & Baum, 2003; Elliffe, Davison,
& Landon, 2008; Grace, 1995, 1999; Kyonka &
Grace, 2008; Landon et al.,, 2003; Lau &
Glimcher, 2005). For human subjects, the few
available studies show limited matching to
reinforcer magnitude (Dube & Mcllvane,
2002; Sanders, 1968; Schmitt, 1974; Wurster
& Griffiths, 1979). Whether this reflects
idiosyncrasies of the relevant experiments
(e.g., Baron & Derenne, 2002) or of human
beings per se remains to be determined. If
humans do not match reliably to reinforcer
magnitudes then, once again, the present
matching functions may be at odds with
laboratory principles. For now, the basic
operant literature provides insufficient guid-
ance for a reinforcement-based interpretation
of the present findings.

Determinants of Bias: The Role of Risk

Football experts cite almost as many situa-
tion-specific reasons for play selection as they
do situations in which plays may be selected
(e.g., American Football Coaches Association,
1995), making a search for general principles
in the present bias effects difficult. Across
many types of situations, however, two factors
are mentioned with some regularity. The first
factor is turnover risk. In the NFL, turnovers
occur more frequently on passing plays than
on rushing plays (on a per-play basis, inter-
ceptions are more common than rushing
fumbles, and fumbles also can result from
passing plays). According to football experts,
play selection favors rushing in cases where
turnovers are regarded as especially costly,
such as at selected field positions (near one’s
own or the opponent’s goal line), when
relatively few yards are needed to earn a new
set of downs, and when a team is winning (e.g.,
Allen, 2002; Bryant, 1999; Levy, 1999; McCor-
duck, 1998).

The second factor is variance in yards gained
through passing versus rushing plays. In the
NFL this variance tends to be higher for



SITUATIONAL MATCHING

passing plays (Rockerbie, 2008) due to excep-
tionally large yardage gains from some passing
plays and to the fact that roughly 40% of NFL
passes are not completed (resulting in a gain
of zero yards). According to football experts,
play selection especially favors rushing in cases
where uncertainty in gains should be avoided,
such as at selected field positions (near the
other team’s goal line), when relatively few
yards are needed to earn a new set of downs,
and when a team is winning (e.g., Allen, 2002;
Bryant, 1999; Levy, 1999; McCorduck, 1998).
By contrast, turnover risk and yardage variance
combine to define the situations in which
passing is regarded as especially useful, namely
when success can only be achieved through
the big yardage gains attainable through
passing, or when the adverse effects of
turnovers are most easily tolerated (McCor-
duck, 1998).

Reed et al. (2006) conceptualized turnovers
as punishment for play selection. Variance in
yards gained may be conceptualized in terms
of variable schedules of “‘reinforcer’” magni-
tude. Given the obvious relevance to operant
choice of punishment (e.g., Critchfield, et al.,
2003; Farley & Fantino, 1978) and variable-
magnitude reinforcement (e.g., Davison &
Hogsden, 1984), we wondered whether turn-
over risk and yardage variance might shed
light on effects observed across all levels of our
five situational variables, even though football
experts do not speak of all game situations in
terms of risk. To obtain a global estimate of
situation-specific turnover risk and yards-
gained variance, plays were pooled from all
32 NFL teams for the six games per team that
comprised the present data set, and two ratios
were determined for each level of each of our
five situational variables. The first was the ratio
of turnover rate for passing (interceptions plus
fumbles) versus rushing (fumbles). The sec-
ond was the ratio of standard deviations of
yards gained from passing versus rushing.
Figure 5 shows the relationship between these
measures (logarithmically transformed for
consistency with GME analyses) and the bias
estimates shown in Figure 4. With ratios
calculated as passing/rushing, the strong
negative correlations shown in Figure 5 (r =
—.74 for turnover risk and r = —.76 for yards-
gained variance) indicate that preference
indeed shifts toward rushing plays as passing
becomes relatively more risky.
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two measures of play-selection risk. See text for details.

Although suggestive, the analysis of Figure 5
is flawed because it mixes two levels of analysis
(the matching relations describe between-
team differences in play selection, while risk
ratios were determined by aggregating data
from many teams). A more appropriate
strategy might be to replicate the analyses for
individual teams. Reed et al. (2006) showed
matching for individual teams when each
game in a season was treated as one observa-
tion. In theory, team-specific turnover rates
and variance in yardage gains can be calculat-
ed and regressed against bias estimates at the
team level, but this approach would require a
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much larger sample of plays than the present
study provided.

The relationship between risk and bias also
could be examined by repeating the analyses
of Figure 4 with a concatenated version of the
GME that directly represents both punishment
and reinforcer variability. Unfortunately, it is
unclear whether punishment should be incor-
porated according to the dictates of one-factor
theory, two-factor theory, or neither (Critch-
field, et al., 2003), and reinforcer-magnitude
variance has been the focus of extremely
limited model-building. In the latter case, a
large literature on risk aversion (e.g., Kahne-
man & Tversky, 1979) suggests that that bad
outcomes (yardage losses or gains of zero
yards) should affect play selection more than
good outcomes (large gains), in which case
preference may be a function of mean
magnitude discounted according to the vari-
ance in some fashion that remains to be
specified. Overall, the operant literature ap-
pears to offer no widely-endorsed model for
incorporating punishment and reinforcer-
magnitude variance into the GME.

The preceding concerns notwithstanding,
the relationships shown in Figure 5 merit
further consideration. From an operant-prin-
ciples perspective, these results highlight the
importance of developing better elaborated
models of operant choice. From a football
perspective, Figure 5 lends empirical support
to the attention that football experts have
placed on risk in certain play-selection situa-
tions, and simultaneously suggests that foot-
ball experts may have underestimated the
commonalities that exist across play-selection
situations. That is, even game situations for
which experts have not emphasized the role of
risk appear to fall along the risk functions of
Figure 5.

Concluding Observations

When a theoretical model is extended to a
new everyday domain, the first question of
interest is whether the model provides a good
description of behavior in that domain (i.e.,
accounts for substantial variance). If so, then
detailed mapping of model concepts, as
defined by its fitted parameters, to domain-
specific phenomena can proceed. For applica-
tions of the GME, the initial question is
whether the relevant behavior follows some
variation on the matching relation. If so, then
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the specifics of the matching function, and the
conditions that influence these specifics, be-
come of interest. Because the matching
relation has been extended to many applied
domains only recently (e.g., football by Reed
etal., 2006), reliability of fit has been the focus
of most investigations. The present findings
demonstrate further reliability of fit (Figures 1
and 3), but also extend the generality of the
GME by showing how a theoretically important
fitted parameter (log b) is relevant to situation-
specific play selection in football.

Such explanatory flexibility, though rarely
explored in applications of the GME to date, is
critical in two ways. First, to be taken seriously
outside a small circle of behavior theorists, a
theoretical account of any applied domain
must address situation-specific differences in
behavior that are well known to domain
experts. As newspaper columns, radio talk
shows, and web pages (e.g., http://www.
twominutewarning.com) illustrate, football afi-
cionados dissect their sport in great detail. An
operant-choice account of play selection is
unlikely to interest them unless it speaks to the
rich play-selection variance that is part of the
sport’s appeal. Second, behavior theorists
should be gratified when studies like the
present one help to place the variability of an
applied domain into a parsimonious concep-
tual framework. Although football fans tend to
emphasize the uniqueness of various game
situations, consistency across situations is
shown both when play selection follows the
linear pattern described by the GME and when
game situations differ along a common di-
mension (e.g., the GME’s bias parameter).

Exercises like the present one also serve
basic behavior science by highlighting ques-
tions that have not received adequate atten-
tion in the laboratory. As noted above,
although hundreds of concurrent-schedules
studies have been conducted across several
decades, relatively little is known about how
factors such as punishment and moment-to-
moment variability in reinforcer magnitude
affect operant choice. Given the considerable
challenges of simply understanding control of
behavior by concurrent frequencies of positive
reinforcement (e.g., Davison & Nevin, 1999),
these omissions are understandable, but given
the prevalence of aversive events (e.g., Sidman,
1989) and outcome variability (Kahneman &
Tversky, 1979; Thaler & Sunstein, 2008) in the
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everyday world, an outside observer might be
forgiven for viewing the resulting account of
behavior as somewhat limited. This under-
scores the essential role of translational re-
search in revealing both the relevance and the
frontiers of behavior principles as they cur-
rently are understood (Mace, 1994).
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APPENDIX

Results of Paired Comparisons Among Levels of Game-Situation Variables

Down
Sensitivity Bias
F df P F df P
Ist vs. 2nd 0.40 1,60 .532 19.98 1,61 <.0001%*
Ist vs. 3rd 0.20 1,60 .660 55.76 1,61 <.0001%%*
2nd vs. 3rd 0.01 1,60 924 26.48 1,61 <.0001%*
Yards Needed to Earn New Downs
Sensitivity Bias
F df P F df p
>10 vs. 5-10 0.42 1,60 .522 21.14 1,61 <.0001%%*
>10 vs. 1-4 1.06 1,60 .308 44.54 1,61 <.0001%%*
5-10 vs. 1-4 3.26 1,60 .076 23.37 1,61 <.0001%*
Time Remaining in Half
Sensitivity Bias
F df P F df P
>15:00 vs. 2:01-15:00 0.53 1,56 .466 1.10 1,57 .299
>15:00 vs. =2:00 0.89 1,56 .350 35.54 1,57 <.0001%*
2:01-15:00 vs. =2:00 0.17 1,56 .687 29.05 1,57 <.0001%%*
Score
Sensitivity Bias
F df P F df P
Winning vs. Tied 0.15 1,58 702 5.67 1,59 .021
Wining vs. Losing 0.01 1,58 .906 27.42 1,59 <.0001%*
Tied vs. Losing 0.04 1,58 .841 13.40 1,59 0015
Field Position
Sensitivity Bias
F df P F df p
83-99 vs. 9-82 4.82 1,48 .033%* ok
83-99 vs. 1-8 0.74 1.48 .392 9.50 1,49 .0003%*
9-82 vs. 1-8 1.32 1,48 .256 12.51 1.49 .0009%*

* Statistically significant with alpha = .05. Note this outcome was not considered as evidence of a sensitivity effect due
to a nonsignificant omnibus ANCOVA outcome.

** Statistically significant with alpha = .017 (.05/3).

*#% No bias comparison conducted following sensitivity comparison with p < .05. See text for explanation.




